Topology II Homework 4

Problem 1: Show that $\mathbb{R}P^3$ is not homotopy equivalent to $\mathbb{R}P^2 \vee S^3$.

Problem 2: Show that if \cup is a cup product, then then induced cross product \times_{\cup} is bilinear and natural. Similarly, show that if \times is a cross product, then the induced cup product \cup_{\times} is bilinear and natural.

Problem 3: For this problem, let's go ahead and assume V,W, and Z are finitedimensional vector spaces over \mathbb{R} . Show the following:

- (a) $V \otimes W$ is naturally isomorphic to $W \otimes V$.
- (b) $V \otimes (W \otimes Z)$ is naturally isomorphic to $(V \otimes W) \otimes Z$.
- (c) $V^* \otimes W$ is naturally isomorphic to Hom(V, W).
- (d) There are natural isomorphisms $(V \otimes W)^* = V^* \otimes W^* = \text{Hom}(V, W^*) = \text{Hom}(W, V^*)$.
- (e) $\operatorname{Hom}(V \otimes W, Z)$ is naturally isomorphic to $\operatorname{Hom}(V, \operatorname{Hom}(W, Z))$.

Problem 4: In class, we showed that if (C, ∂) and (C', ∂') are chain complexes, then we could form a new chain complex by taking tensor products $(C \otimes C', \partial^{\otimes})$. Show that this is indeed a chain complex (i.e., that $(\partial^{\otimes})^2 = 0$).