Complex Analysis Homework 6

Problem 1: (Type 1 problem) Prove that all entire functions that are also injective take the form $f(z)=a z+b$ with $a, b \in \mathbb{C}$, and $a \neq 0$. [Hint: Apply the Casorati-Weierstrass Theorem to $f(1 / z)$.]

Problem 2: The function $\cos (1 / z)$ has an essential singularity at 0 . Verify the truth of the Great Picard Theorem directly for this function.

Problem 3: Show that for $n \geq 1$,

$$
\int_{-\infty}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{n+1}}=\frac{1 \cdot 3 \cdot 5 \ldots(2 n-1)}{2 \cdot 4 \cdot 6 \ldots(2 n)} \cdot \pi
$$

Problem 4: Show that

$$
\int_{0}^{1} \log (\sin (\pi x)) d x=-\log (2)
$$

Hint: Use the contour below

Problem 5: (Type 1 problem) Suppose that f has a pole of at z_{0} of order $\leq N$. The function $\left(z-z_{0}\right)^{N} f(z)$ has a removable singularity at z_{0}. Prove that

$$
\operatorname{Res}\left(f, z_{0}\right)=\left.\frac{\left(\frac{d}{d z}\right)^{N-1}\left[\left(z-z_{0}\right)^{N} f(z)\right]}{(N-1)!}\right|_{z=z_{0}}
$$

