Complex Analysis Homework 5

Problem 1: (Pledged) Let Ω be an open subset of \mathbb{C} and let $C \subset \Omega$ be a circle whose interior is also contained in Ω. Suppose that f is a function which is holomorphic on Ω except possibly at a point w inside of C. Prove that if f is bounded near w, then

$$
\int_{C} f(z) d z=0
$$

Problem 2: Show that

$$
\int_{0}^{\infty} \sin \left(x^{2}\right) d x=\int_{0}^{\infty} \cos \left(x^{2}\right) d x=\frac{\sqrt{2 \pi}}{2} .
$$

These are the Fresnel integrals. Here, \int_{0}^{∞} is interpreted as $\lim _{R \rightarrow \infty} \int_{0}^{R}$.
[Hint: Integrate the function $e^{-z^{2}}$ over the path below and recall that $\int_{-\infty}^{\infty} e^{-x^{2}}=\sqrt{\pi}$.]

Problem 3: Suppose f is continuous in a region Ω. Show that, if they exist, any two primitives of f (i.e., functions $F(z)$ such that $F^{\prime}(z)=f(z)$) differ by a constant.

Problem 4: Let $\gamma:[0,1] \rightarrow \mathbb{C}$ be a smooth curve and $-\gamma$ the curve with the same image as γ, but traversed in the reverse direction (i.e., $-\gamma(t)=\gamma(1-t)$). Show that for any continuous function f defined along γ,

$$
\int_{\gamma} f(z) d z=-\int_{-\gamma} f(z) d z
$$

Bonus Problem: Suppose that f is an entire function on \mathbb{C} with the property that for each $z_{0} \in \mathbb{C}$ at least one coefficient of the power series expansion

$$
f(z)=\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}
$$

is equal to 0 . Prove that f is a polynomial.
[Hint: Use the fact that $c_{n} n!=f^{(n)}\left(z_{0}\right)$ together with a countability argument.]

