Complex Analysis Homework 4

Recall that there is a unique Möbius transformation f of $\widehat{\mathbb{C}}$ which satisfies

$$
\begin{aligned}
f(0) & =-1, \\
f(\infty) & =1 \\
f(i) & =0
\end{aligned}
$$

This Möbius function is called the Caley transformation.

Problem 1: Write explicitly

$$
f(z)=\frac{a z+b}{c z+d}
$$

That is, find a, b, c, d.
Problem 2: (Type 1 problem) Give an elementary (but still rigorous) explanation of the fact that

$$
f(\mathbb{R} \cup\{\infty\})=\{\text { the unit circle in } \mathbb{C}\} .
$$

Problem 3: (Type 1 problem) Explain why the image under f of the open upper halfplane is the open unit disk $\mathbb{D} \subset \mathbb{C}$.

Problem 4: (Type 1 problem) For several values of $y>0$, sketch the image of the straight lines in the upper half plane.

$$
\{f(x+i y) \mid x \in \mathbb{R} \cup \infty\}
$$

Absent explicit formulas, give an "intuitive" explanation of why your pictures make sense.

Problem 5: Consider the function defined on \mathbb{R} by

$$
f(x)= \begin{cases}0 & \text { if } x \leq 0 \\ e^{-1 / x^{2}} & \text { if } x>0\end{cases}
$$

Show that f is infinitely differentiable on \mathbb{R}, and that $f^{(n)}(0)=0$ for all $n \geq 1$. Conclude that f does not have a converging power series expansion $\sum_{n=0}^{\infty} a_{n} x^{n}$ for x near the origin.

Problem 6: (Pledged) Give examples of power series $f(z)$ and $g(z)$ so that

- $f(z)$ has radius of convergence 1 ,
- $g(z)$ has radius of convergence 2 ,
- $f(z) \cdot g(z)$ has radius of convergence 10 .

