Complex Analysis Homework 3

Problem 1: Recall that if a complex valued function $f: D \rightarrow \mathbb{C}$ is holomorphic, then it satisfies the Cauchy-Riemann equation

$$
\frac{\partial f}{\partial x}=\frac{1}{i} \frac{\partial f}{\partial y} .
$$

This motivates us to define two differential operators

$$
\frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-\frac{1}{i} \frac{\partial}{\partial y}\right) \quad \text { and } \quad \frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+\frac{1}{i} \frac{\partial}{\partial y}\right) .
$$

Let's observe two facts. First, a function f satisfies Cauchy-Riemann if and only if $\frac{\partial f}{\partial z}=0$. Second, if a function is indeed complex differentiable, then $\frac{d f}{d z}=\frac{\partial f}{\partial z}$.
Show that

$$
4 \frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}}=4 \frac{\partial}{\partial \bar{z}} \frac{\partial}{\partial z}=\Delta,
$$

where Δ is the Laplacian

$$
\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}
$$

Problem 2: A function $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is said to be harmonic if $\Delta h=0$. Use what you learned from Problem 1 to prove that if f is holomorphic on the open set $\Omega \subset \mathbb{C}$, then the real and imaginary parts of f are harmonic.

