
Complex Analysis Homework 3

Problem 1: Recall that if a complex valued function f : D → C is holomorphic, then it
satisfies the Cauchy-Riemann equation
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This motivates us to define two differential operators
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Let’s observe two facts. First, a function f satisfies Cauchy-Riemann if and only if ∂f
∂z̄ = 0.

Second, if a function is indeed complex differentiable, then df
dz = ∂f

∂z .
Show that
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where ∆ is the Laplacian
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Problem 2: A function h : R2 → R is said to be harmonic if ∆h = 0. Use what you
learned from Problem 1 to prove that if f is holomorphic on the open set Ω ⊂ C, then the
real and imaginary parts of f are harmonic.
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